Model- and data-driven approaches for genotype-phenotype data
The 33rd Annual Queenstown Molecular Biology Meeting (QMB 2023)
Model-based approaches to genotype-phenotype data
$
f(x_1,\, \ldots,\, x_p) = \beta_0 + \sum_{i} x_i \beta_i
+ \sum_{i \le j} x_i x_j \beta_{i,j}
$
$
+ \sum_{i \le j \le k} x_i x_j x_k \beta_{i,j,k}
+ \ldots
$
"eQTL" simulations (work in progress)
- Multi-Layer Perceptron [ AI ]
- Logistic Regression [ :) ]
- Transformer-encoder [ AI ]
- LightGBM (Random Forests) [ AI? ]
- Differentiable Logic [ AI ]
- Support Vector Machines [ AI? ]
Why don't you just do AI?
What AI?
Thank you!